Reg. No.	

III Semester M.Sc. Degree (CBSS – Reg./Sup./Imp.) Examination, October 2022
(2019 Admission Onwards)
MATHEMATICS
MAT3C14 – Advanced Real Analysis

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from this Part. Each question carries 4 marks. (4x4=16)

- 1. Let B be the uniform closure of an algebra A of bounded functions. Then prove that B is a uniformly closed algebra.
- 2. Give an example of a functions with f_n converges to f, but f_n' does not converges to f'. Justify your answer.
- 3. Define orthogonal system of functions. Give example with justification.
- 4. Prove that $\lim_{x \to +\infty} x^{-\alpha} \log x = 0$.
- 5. Prove that the existence of all partial derivatives does not imply the differentiability.
- 6. Explain directional derivative of f at x in the direction of a unit vector u and continuously differentiable functions.

PART - B

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks. (4×16=64)

Unit - I

7. a) Suppose $f_n \to f$ uniformly on a set E in a metric space. Let x be a limit point of E, and suppose that $\lim_{t \to x} f_n(t) = A_n$, (n = 1, 2, 3, ...). Then Prove that $\{A_n\}$ converges and $\lim_{t \to x} f(t) = \lim_{t \to \infty} A_n$.

K22P 1411

- b) Suppose K is compact, and
 - i) {f_n} is a sequence of continuous functions on K,
 - ii) {f_n} converges pointwise to a continuous function f on K, ii) $\{f_n\}$ converges pointwise K, n=1,2,3... Then prove that $f_n\to f$ uniformly iii) $f_n(x)\geq f_{n+1}(x)$ for all $x\in K$, n=1,2,3...
- 8. a) Prove that there exists a real continuous function on the real line which is nowhere differentiable.
 - nowhere differentiable.

 b) Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.
- 9. Let A be an algebra of real continuous functions on a compact set K. If A Let A be an algebra of real ovarnishes at no point of K, then prove that the separates points on K and if A varnishes at no point of K, then prove that the uniform closure B of A consists of all real continuous functions on K.

Unit - II

- 10. a) Suppose the series $\sum_{n=0}^{\infty} c_n x^n$ converges for |x| < R and define $f(x) = \sum_{n=0}^{\infty} c_n x^n$, (|x| < R). Then prove that the series $\sum_{n=0}^{\infty} c_n x^n$ converges uniformly on $[-R+\epsilon,R-\epsilon]$, no matter which $\epsilon>0$ is chosen. Also prove that the function f is continuous and differentiable in (-R, R) and $f'(x) = \sum_{n=1}^{\infty} nc_n x^{n-1}$, |x| < R.
 - b) Suppose the series $\sum_{n=0}^{\infty} c_n x^n$ converges for |x| < R and define $f(x) = \sum_{n=0}^{\infty} c_n x^n$, (|x| < R). Then prove that f has derivatives of all orders in (-R, R) and derive the formulas.
- 11. State and prove Parseval's Theorem.
- a) Define Gamma Function. Prove that logΓ is convex on (0, ∞).
 - b) State and prove Stiriling's Formula.

Unit - III

- 13. a) Let r be a positive integer. If a vector space X is spanned by a set of r vectors, then prove that dim $X \le r$.
 - b) Suppose X is a vector space, and dim X = n. Prove that
 - i) A set E of n vectors in X spans X if and only if E is independent.

- ii) X has a basis and every basis consists of n vectors.
- iii) If $1 \le r \le n$ and $\{y_1, y_2, ..., y_r\}$ is an independent set in X then X has a basis containing $\{y_1, y_2, ..., y_r\}$.
- 14. a) Suppose f maps an open set $E \subset R^n$ into R^m . Then prove that $f \in C(E)$ if and only if the partial derivatives $D_j f_i$ exist and are continuous on E for $1 \le i \le m$, $1 \le j \le n$.
 - b) Suppose f maps a convex open set $E \subset R^n$ into R^m , f is differentiable in E and there is a real number M such that $||f'(x)|| \le M$ for every $x \in E$. Then prove that $|f(b) f(a)| \le M|b a|$ for all $a \in E$, $b \in E$.
- 15. State and prove implicit function theorem.

